Flexible Fuzzy Rule Bases Evolution with Swarm Intelligence for Meta-Scheduling in Grid Computing
نویسندگان
چکیده
Fuzzy rule-based systems are expert systems whose performance is strongly related to the quality of their knowledge and the associated knowledge acquisition processes and thus, the design of effective learning techniques is considered a critical and major problem of these systems. Knowledge acquisition with a swarm intelligence approach is a recent learning strategy for the evolution of fuzzy rule bases founded on swarm intelligence showing improvement over classical knowledge acquisition strategies in fuzzy rule based systems such as Pittsburgh and Michigan approaches in terms of convergence behaviour and accuracy. In this work, a generalization of this method is proposed to allow the simultaneous consideration of diversely configured knowledge bases and this way to accelerate the learning process of the original algorithm. In order to test the suggested strategy, a problem of practical importance nowadays, the design of expert meta-schedulers systems for grid computing is considered. Simulations results show the fact that the suggested adaptation improves the functionality of knowledge acquisition with a swarm intelligence approach and it reduces computational effort; at the same time it keeps the quality of the canonical strategy.
منابع مشابه
Bio-inspired techniques applied to meta-schedulers based on fuzzy rules in grid computing
There exists a wide set of scheduling approaches in literature for grid computing. However, it is still necessary to make e orts to obtain scheduling strategies able to manage the inherent uncertainty and dynamism of grids in order to meet QoS requirements of both users and network administrators. In this regard, Fuzzy Rule-Based Systems are expert systems that are increasingly arising as an al...
متن کاملFuzzy scheduling with swarm intelligence-based knowledge acquisition for grid computing
In spite of the existence of a large diversity in literature related to scheduling algorithms in computational grids, there are only a few efficiently dealing with the inherent uncertainty and dynamism of resources and applications of these systems. Further, the need to meet both users and providers QoS requirements, such as tardiness or resource utilization, calls for new adaptive scheduling s...
متن کاملA Fuzzy Differential Evolution Algorithm for Job Scheduling on Computational Grids
Grid computing is the recently growing area of computing that share data, storage, computing across geographically dispersed area. This paper proposes a novel fuzzy approach using Differential Evolution (DE) for scheduling jobs oncomputational grids. The fuzzy based DE generatesan optimal plan to complete the jobs within a minimum period of time. We evaluate the performance of the proposed fuzz...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 33 شماره
صفحات -
تاریخ انتشار 2014